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Abstract. A comparisonismadeof theinverremeanfreepathandstoppingpower of 
low- and medium-energy electrons in solids as computed by means of some different 
simple models of the generdized oscillator strength. The comidered generalized 
osciUator strength models consist of an optical oscillator strength, which is either 
derived from experimental opticd data or modelled from atomic data or from the 
local plasma approximation, complemented with a suitable algorithm to extend it to 
the non-zero moment- lransfer region. The extension algorithms adopted here are 
6-function representations of the Bethe surface similar to the so-called 'oncmode' 
models of the freeslectron gas. 

1. Introduction 

During the last few years, a number of models to compute inelastic scattering of 
electrons in solids from knowledge of the optical oscilIator strength (00s) have been 
proposed. Basically, these approaches are extended versions of the statistical model 
of Tung e l  Q/ [l] which combines the 00s derived from the local plasma approxima- 
tion (LPA) [2] with the Lindhard theory for the homogeneous electron gas [3]. Their 
common characteristic is to model the OOS, and then to extend it into the non-zero 
momentum transfer region by a convenient and physically motivated r e c i p e t h e  ex- 
tension algorithm-thus obtaining a model of the generalized oscillator strength (COS). 
Some of these models use extension algorithms of the 'onemode' or 'plasmon-pole' 
type, which are attractive primarily since they are simple and, moreover, convenient 
to use in Monte Carlo simulation. We refer to some of the previous work along these 
lines: Ritchie and Howie 141, Szajman and Leckey [5], A.shley 16-81, Liljequist [9, IO], 
Salvat el al [ll], Penn [12], Tanufna el al [13], Ding and Shimizu [14], Martinez et ~l 
[15], Mayol and Salvat [16] and Mayol e l  ~l [17]. In the F'resent work, we will consider 
the low- and medium-energy ( ~ i :  10'-104 eV) region. 

Usually, the validity of a model is analysed by comparing computed inelastic mean 
free paths with experimental values. Such a comparison is not completely conclusive 
since the experimental values are usually determined by the overlayer method which 
yields attenuation lengths (i.e. including elastic scattering effects) rather than inelastic 
mean free paths (see, for example [IS]). I t  may also be noted that there seem to be few 
experimental data on stopping power in the energy region referred to above. This has 
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left open the possibility of some doubt as regards to the choice of the 'best' model. 
Hence, i t  is of interest to compare different models for the simulation of inelastic 
electron scattering. In particular, it is of interest to study in which respect and to 
what extent the results are sensitive to the adopted 00s and extension algorithm. 

Our discussion is based on a well known approach which we state very briefly to 
establish the notations used here. The inelastic scattering of fast electrons in solids 
can be computed, to the first-order Born approximation, by means of the atomic 
differential cross-section [19] 
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where df(Q,W)/dW is the GOS. In equation (l), e is the electron charge, E is the 
incident electron kinetic energy, U' is the energy transfer and 

Q = (hq)2/2m (2) 

where tip is the momentum transfer and m the electron mass. We may briefly refer to 
Q as the 'recoil energy', but it should be noted that it is equal to the recoil energy of 
the target only in the case where the target is a free electron at  rest. In the optical 
limit Q = 0, the GOS reduces to the 00s df(W)/dW 3 df(Q = 0, W)/dW. The 
inverse mean free path (IMFP) A- '  and the stopping power S are given by 

where N is the number OF atoms per unit volume in the stopping medium. The 
integrals extend over the kinematically allowed region of the (Q, W)-plane, i.e. 

2 
O < W < E  Q- < Q < Q+ Q* = [E"'& ( E  - W)"2] . (5) 

Since here we compare different GOS models with each other, we may, for the sake of 
simplicity, disregard exchange effects. 

Starting from equation (l), the modelling of inelastic electron scattering amounts 
to modelling the GOS. The GOS, or Bethe surface, can be conveniently visualized 
[19], and may be heuristically interpreted as the 'effective number of atomic electrons' 
taking part in an inelastic interaction involving a particular energy and momentum 
transfer. One may, at least roughly, infer the gross features of the GOS from simple 
physical arguments. For example, it is well known 1191 that for large Q the Bethe 
surface has the shape of a ridge stretched out along the line W = Q ,  corresponding 
to binary collisions where binding energies are negligible compared with the energy 
transfer. The shape of the GOS is restricted in particular by the Bethe sum rule [19], 
i.e. 



Inelastic electron scattering models 2881 

where Z is the atomic number of the material. 
Alternatively, one may work with the dielectric energy-lcss function Im(-l/c). 

The dielectric function c ( Q ,  W )  can be related to the GOS, so that the cos-which is 
originally an atomic concept-can be applied to the solid state and to the homogeneous 
electron gas. In the latter case, it is convenient to refer to the GOS per electron rather 
than per atom, i.e. the Bethe sum rule (6 )  for the electron gas GOS adds up to 
unity rather than to the atomic number 2. The 00s is related to the optical limit of 
Im(-l/c) through [20] 

where R, is the plasmon energy corresponding to the total average electron density 
of the stopping material. c(W) E c(Q = 0, W )  is the (complex) dielectric constant. 

The computation of inelastic electron scattering in  the energy range of interest 
(% 10’-104 eV) is far from trivial if one wants to reach an accuracy better than, say, 
5-10% in WFP and stopping power. It is often presumed that the statistical model of 
Tung et al ( l ]  (i.e. the LPA combined with the Lindhard theory [3] for the free-electron 
gas) should represent a fairly accurate approximation. However, it seems to us that 
this model is not generally well motivated from a physical point of view, and somewhat 
ambiguous in its application (cf below) [2,17]. In particular, it does not yield a pmper 
threshold for bound-shell ionization [16]. Moreover, this kind of approach appears 
not to be well suited to convenient application in Monte Carlo simulations. We will 
therefore also consider some alternatives. 

The paper is structured as follows. As stated before, our basic approach is to model 
the OOS, and then to extend it into the Q > 0 region using a suitable algorithm, 
thus obtaining a model of the GoS. The 00s models adopted in our calculations 
are described in section 2. Three extension algorithms are presented in section 3. 
In section 4, Imps and stopping powers in aluminium and copper computed from 
different combinations of 0 0 s  and extension algorithm are shown. Finally, conclusions 
are summarized in section 5. 

2. Modelling the 00s 

Following Penn [12], one may expect that an experimentally well-determined 00s 
should be the most reliable to be found. It may however not always be available, 
so one should also look for other methods to obtain an estimate of the 00s. Also, it 
may turn out (cf below) that the 00s  does not, in practice, need to be specified in 
very great detail, or with high accuracy in every detail. As compared to extensive 
tabulations, a simpler representation in terms of a few parameters might be possible 
and sometimes even more convenient. We will compare results from the following 
three 00s models. 

2.1. 00s model I .  Ezperimental 00s 

Experimental optical data tables, i.e. tabulations of the dielectric constant c(W) 
or the refractive index and damping coefficient, are currently available for selected 
materials [21]. The experimental 00% for aluminium and copper are shown in figure 1. 
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Figure 1. 00% computed from experimental optical data [ZI] (fuU curves) and 
obtained ftom the LPA (equation (11)) with Dirac-Hartree-Slater atomic densities 
(broken curves) for Al (a) and Cu (b). 

These have been obtained numerically [17] according to equation (7) using the optical 
functions tabulated in reference [Zl]. 

The mean ionization potent.ial I ,  which is the basic parameter in the high-energy 
Bethe stopping power formula, can be obtained from the 00s as 

ZIn I = l* In W dfo dW 
d W  

Making a linear extrapolation of the K-edge slope in a log-log diagram, the experi- 
mental 00% in figure 1 lead to I = 161.5 eV for aluminium and I = 321.0 eV for 
copper. These values are in excellent agreement with those recommended by Berger 
and Seltzer 1221. 

2.2. 00s model II. Local plasma approzrmation 

An alternative is the LPA, which amounts to assuming that the 00s for a single-element 
scattering medium, whose atoms have a locally varying atomic electron density p ( r ) ,  
can be obtained by considering that the response of the electrons in a volume element 
dv at r is the same as if they were in a freeelectron gas of density p(r). Neglecting 
plasmon damping, the 00s for a free-electron gas (FEG) of density p reduces to the 
delta function 

(9) = 6 [W - IVpl(p)] 
FEG 

(9) 

where 

wP,(p) z (4?rp~ez/m)"* (10) 
is the long-wavelength limit of the plasmon energy. Therefore, the LPA leads to the 
following 0 0 s  
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where rws is the Wigner-Seitz radius. In the calculations reported below, we have 
used atomic electron densities obtained from Dirac-Bartree-Slater calculations with 
Wigner-Seitz boundary conditions. I t  turns out that  the plasmon energy may have 
to be adjusted for the results to agree with higher energy stopping power theory and 
relevant experimental data  (i.e. the Bethe formula and the mean ionization poten- 
tial I ) .  The parameter y is introduced in order to obtain the correct mean ionization 
potential as derived, for instance, from accurate experimental optical data. In this 
way, it is guaranteed that the high-energy stopping power derived from the 00s (11) 
will agree with the stopping power given by the Bethe formula (using the same I 
value). The values of this parameter, as derived from the mean ionization potential 
computed from the experimental OOS, are y = 1.31 for aluminium and 7 = 1.26 for 
copper. The 00% (11) for these two materials are included in figure 1 for comparison 
purposes. I t  is seen that the 00s derived from the LPA may be notably different from 
the 00s obtained from optical data. The fact that y deviates appreciably from unity 
also points to the ad hoc and somewhat unsatisfying nature of the LPA. Moreover, it 
may be noted that the choice of y is not unambiguous, since a value of unity, rather 
than the above values, should be chosen to reproduce the IMFP obtained from optical 
data [17]. 

2.9. 00s model III. Subshell osczllator models 

As a second alternative, one may suggest that a model of the 00s may be constructed 
from atomic shell or band-structure data, e.g. using atomic configuration and binding 
energies [9-111. This may (as in the LPA case) require the adjustment ofsome parame 
ters (see [9, lo]) to get agreement with empirical results, e.g. with the mean ionization 
potential. A systematic procedure for this purpose is to use regularly-shaped oscillator 
distributions to model the well-determined experimental 00s in terms of contributions 
from different subshells, bands and collective excitations. We will refer to this as “sub- 
shell oscillator models”. An argument for this seemingly retrograde procedure is, as 
mentioned above, that one purpose apart from that of accuracy must be to find a lgo  
rithms and data sets which are comparatively easy to perform, store and convey, to 
implement into Monte Carlo routines, and to generalize to new cases. In fact, since 
we can see [I71 that  the 00s corresponding to the LPA actually differs appreciably 
from the experimental OOS, and nevertheless works rather well, we may expect that 
an appropriately constructed subshell oscillator distribution, expressed in terms of a 
limited number of material-dependent parameters, should work even better. Such a 
model may, in turn, provide indications as to what recipe one should use to extrapolate 
to cases for which the experimental 00s is not available. 

Henceforward we will make use of the fact that  formally, as well as in the practice 
of computer calculations, the 00s might be represented as a sum of suitably spaced 
‘optical’ oscillators 6(W - W,), i.e. 

-- df(”) - E hj6(W - LVj) 
d W  

where hj is the oscillator strength associated with energy transfer IVj. For the sake 
of illuminating the extent to which the 00s must be precisely specified, we will, as 
regards subshell oscillator models, limit our considerations mainly to the simplest 
model of this kind, which consists of a set of a few optical oscillators 6(W - W,,), 
each representing, in a very crude way, optical excitations from a particular atomic 
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shell [9]. WSh is the excitation energy (which may also be regarded as the partial mean 
ionization potential for this shell [9]). Here we set the associated oscillator strength 
hsh equal to the number of electrons in that shell The excitation energy W,, of each 
inner shell is set proportional to the corresponding binding energy U,,, i.e. W,, = all,, 
where a is an adjustable parameter. The excitation energy Wvsh of the hvsh valence 
electrons is estimated separately, e.g. from a free-elect ron gas approximation, from 
low energy loss data, or so as to get agreement with the empirical IMFP [9]. The 
parameter a is then determined from the equation 

J M Ferndndet-I'area et a1 

Z l n I  = hvsh in(~ i~v lvsh)  + ChshIn(aUsh)  (13) 

so that the 00s (12) gives the same mean ionization potential as the experimental 00% 
Consequently, we expect the three 00s models to give converging results on stopping 
power at high energies. The presently used model Ill parameters for aluminium and 
copper are given in table 1. 

Table 1.  00s model 111 parameters for alaminium and copper. The present value 
of the parameter a (see equation (13)) for AI and Cu are 2.27 and 2.39 respectively. 

In more accurate subshell oscillator models [10,15], optical excitations of a partic- 
ular shell (or subshell) are represented by an oscillator dislr&tion Ehj@' - Wj), 
where Eh, = hsh. For inner shells, one should have, approximately, hj  c( W;" for 
energies W, above the ionization threshold, where the exponent a is directly related to 
the parameter a and may be estimated from basic photoelectric theory [9,lO]. From 
such theory, one would in general expect a to have values in the range a 1.5-2.0, as 
discussed in reference [9]. The values in the present case are appreciably higher (see 
table 1). For copper (and other transition metals), this is essentially due to the use 
of a single oscillator for the valence electrons, which tends to enforce an unnaturally 
low value of the partial mean ionization potential 191 of the outermost (valence) shell. 
For aluminium, it appears that the rather high value of a may be partly appropriate, 
being due to the particular structure of the 00s near the L-shell edge (see figure l(a)). 
This indicates that the use of a single proportionality constant a, as in equation (13), 
might be somewhat crude. 

3. Extension of 0 0 s  to GOS 

On the basis of equation (12) it is convenient to extend the 00s into the Q > 0 
region, i.e. into the GOS, by means of a device referred to as '&oscillators' [lo]. These 



Inelastic eleciron scailering models 2885 

extensions include the well known 'one-mode' or 'plasmon-pole' models. A 6-oscillator 
is basically defined as the function 6(W -F,(Q)),  where the dispersion relation F,(Q) 
is a single-valued function of the recoil energy Q. In the optical limit, the 6-oscillator 
reduces to  an optical oscillator with Wj = Fj(0). The extension of the 00s t o  the 
GOS is carried out simply by replacing each optical oscillator by a 6-oscillator. Thus 
equation (12) is replaced by 

Parenthetically, it may be noted that one can always use 6-oscillators to extend the 
00s into the GOS. To see this, replace for the moment .Fj(Q) by a function F(W'; Q), 
where W' is a continuous variable representing energy transfer at  Q = 0, and let 
F(W'; Q) be defined by 

Then it can be shown that 

This means that  the GOS can he expressed as the 00s extended by &oscillators along 
curves F(W';Q) in the (Q, W)-plane, such that asumniation as in the Bethe sum rule 
(6) gives a constant value along each curve. 

However, the present models employ &oscillators with simple and schematic dis- 
persion relations F,(&). The main reason for using 6-oscillators is that we find them 
convenient for modelling and simulat,ion purposes. An alternative to the use of 6- 
oscillators is, for example, extension by means of the complete Lindhard dielectric 
function for the free-electron gas (see e.g. reference [I]), or by means of Drude-type 
simplifications of the Lindhard dielectric function [4,12-141. 

We consider, then, the physically motivated choice of 6-oscillators for different 
purposes-namely, for the excitation of valence electrons, and for the excitation of 
inner-shell electrons. Here we will compare three particularly simple 6-oscillator mod- 
els, named, for brevity, the plasmon (line) (P) model, the (inner) shell (S) model, and 
the two-modes (T) model. A common simplifying feature is that  the dispersion rela- 
tions Fj(Q) are linear or piecewise-linear which, for example, agrees well with physical 
reality along the Bethe ridge. 

3.1, Plasmon (P)  model 

This model has been used e.g. by Ashley [6-81. It  is given by 

Fj(Q) = W, + Q (17) 

where Wj is the optical limit. This relation is actually aschematic simplif~cation of the 
plasmon dispersion relation for a freeelectron gas [6], extended into a line paralIel to 
(and, for large &, effectively close to) the asymptotic middle of the Bethe ridge. When 
this model is used to describe bound-shell ionization, however, it shifts the ionization 
threshold to 2 U,, [16]. The P model, or its more accurate version using the proper 
IOW-& plasmon dispersion relation [12], is so far the most extensively used of the three 
models discussed here. 
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3.2. Shell (S) model 

The shell model is defined by 

J M Ferndndez-Vareo et a1 

Fj (Q) = Wj Q 6 

Fj (Q) = Q Q > W, 

The physical picture here is that the interaction typically has either ‘resonance’ 
character or ‘free’ (binary) character, corresponding to distant and close collisions, 
respectively [23]. The behaviour for Q > W, corresponds to the Bethe ridge. 

The S model has been tried for the free-electron gas [9], taking the plasmon energy 
as the excitation energy W,, In this case, it fails a t  incident electron energies about 
and helow the plasmon excitation threshold, a fault shared to some extent with the P 
model. It has recently been proposed [16] that  the S model is more satisfactory than 
the P model for inner-shell ionization, and that it yields fairly accurate ionization 
cross-sections when used together with an experimental 00s or an 00s  derived from 
hydrogenic wavefunctions [16]. 

3.3. Two-modes (T) model 

The T model described here is a slight simplification of a model described in more 
detail elsewhere [15,17]. It  is designed to reproduce the results of the Lindhard theory 
[3] for the free-electron gas, and has been shown to be an improvement over the 
P model in this respect [15]. Like the Lindhard theory and the statistical model 
of reference [l] it is thus well suited to valence electrons. When used to describe 
bound-shell ionization, it predicts energy losses below the ionization threshold, and 
the plasmon branch (see below) creates, like the P model, an extra threshold at  2 Ush, 

The present T model is obtained if in equation (14) we replace the single-mode 
&oscillators 6(W - Fj(Q)) by 

[1 -~j(Q)16(W - (Wj + Q)) + gj(Q)6(cf’ - Q) (19) 

where 

) W,? ( Wj + Q) 
The parameter A is chosen so as to optimize quantitative agreement with the Lindhard 
theory. Within a limited region of small Q,  two excitation modes coexist. One mode 
or branch, with strength 1 - gj(Q), represents plasmon excitation; the other, with 
strength gj(Q), represents electron-hole excitation. For large Q,  gj(Q) = 1 ,  i.e. the 
plasmon branch disappears, and the electron-hole excitation branch continues into the 
Bethe ridge. For small Q ,  si(&) decreases to zero roughly as Q3; thus the strength 
of the plasmon branch increases to a maximum. In this way, the T model reflects 
the two major and related aspects~of the collective behaviour of the electron gas, i.e. 
the screening of the Coulomb interaction and the occurrence of plasma oscillations. In 
equation (19), the plasmon branch has, for simplicity, the inclination unity (dTV/dQ = 
1) .  Actually, the inclination depends on the plasmon energy. This should be taken 
into account to reproduce closely the results of the Lindhard theory [15]. Further 
details and the explicit form of the parameter A are discussed elsewhere [15]. 
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4. Comparison of different 00s and extension models 

We present here examples of the magnitude and character of the differences which 
arise in the inelastic IMFP A-' and the stopping power 5' when the 00s models I-III 
are used in various combinations with the P, S and T 6-oscillator models performing 
the extension from 00s to GOS. 

Figure 2 compares the three extension algorithms P, S and T when used to compute 
the IMFP and stopping power of electrons moving in a freeelectron gas (00s model I11 
with a single oscillator, according to equation (9)). The consideration of electron gases 
with very high densities, i.e. with high Wpr values, is required for the LPA description of 
inner-shell ionization.. Stopping powers agree well except near and below the plasmon 
threshold. The IMFP computed by the P model is systematically somewhat smaller 
than the IMFP computed by the T model, while for the S model it is somewhat larger. 
This is a typical result, which is seen again in the following. 

10'  10'  l o '  10' 10 '  10' 
E (eV) E (ev) . .  . .  

Figure 2. Comparison of invwe mean free path (a) and stopping power (b) in 
freeelectron gaser of different d-ities, computed with the P (short-dashed broken 
curves), S (long-dashed broken cwves) and T ( f a  curves) 6-0scillator models. The 
energy loss (non-zero loss, in ease or the T model) at Q = 0 is the long-wavelength 
plasmon energy Wpr. The considered gases have plasmon energies of 1.5, 15, 150 and 
1500 ev. 

Figures 3 and 4 show a comparison between the results of the P, S and T models 
when combined with the experimental 00s for aluminium and copper. Since the T 
model is physically suited to the valence electrons, which dominate the results for 
stopping power as well as IMFP (in particular at low energy), we expect the T model 
to be the most accurate single choice here. The S model is presumably better than 
the T model to describe inner-shell excitations, but the relative contribution from 
inner shells to the IMFP and stopping power is small. The S model gives a slightly 
larger and the P model a slightly smaller stopping power, as compared to the T model. 
The difference in IMFP is similar but somewhat larger. These results can evidently 
be understood from the results for the free-electron gas (cf figure 2). It may be 
noted that in the results obtained by means of the experimental oos for copper, the 
familiar plasmon threshold obtained with the LPA 00s (cf figure 5 below) is entirely 
absent; there is no sharp, well-defined plasmon in copper, That it arises in the LPA is 
apparently an artifact of that method. 

IMFP and stopping power in copper, obtained from the LPA 00s with the three 
extension algorithms, are shown in figure 5. The threshold for non-zero IMFP and 
stopping power with the P and S models evidently corresponds to the effectively lower 
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10'  10' 10'  
E (eV) . .  

Figure 3. Inverse mean free pathin A! (a) and Cu (b) computed from 0 0 s  mode! I 
(experimental 00s) using the P (shortdashed broken curves), S (longdashed broken 
curves) and T (full curves) 6-osciUator models. 

10 * 

10 

5 1  
>, 
v 

v1 

lo  10' 10' 10' 10 10' 10' 10. 
E (ev) E (4 

Figure 4. Stopping power in A1 (a) and Cu (b) computed from 00s model I (ex- 
perimental 0 0 s )  using the P (short-dashed broken curves), S (long-dashed broken 
curves) and T (full curves) 6-ordllator models. 

5 10 '~ -1 j :  , ;  I ,.-..: 

, :  
I :  
I :  
I :  
I :  
I :  
I :  

- 
k 1 0 - 3  

10 -'1 
10 10' 10 '  10' 

E (4 
Figure 5. Inverse mean free path (a) and stopping power (b) in Cu, computed from 
00s model I1 (LPA) using the P (shortdashed broken curves), S (longdashed broken 
curves) and T (full curves) 6-oscillator models. 

limit of the plasmon energy found with the LPA (cf figure 1). The relative differences 
above threshold are similar to those observed in figures 3 and 4. 

In figures 2-5 we have compared the three 6-oscillator models P, S and T with 
each other, assuming the same 00s for them all (either the one corresponding to a 
free-electron gas, or the one derived from experimental optical data-model 1-r from 
the LPA-model 11). In figures 6 and 7 below we will compare the results of different 
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ooss-models I, I1 and 111-restricting ourselves, for clarity, to the T model to extend 
these to  Q > 0. 

Figure 6. Inverse m e a  free pathin A1 (a) and Cu (b) computed from 00s models I 
(experimental oos, short-dashed broken curves), I1 (LPA, long-dashed b r o h  curves) 
and I11 (subshell oscillator model, full curves) with the T 6oscillator model.  lo^;.- 10 ... - % 1 ~ * ~  10 ,', ,', /- -=.=-z-- 

.'1 
,', 

.Y 
F . ' , I  7 1  i' 
v /' % ,' ; 

lo-' ,I ; 
,' ;: 

10 -2 ,' ,,: 10"  ,,'; 

lo-; ' 

10 -1 ,, 6' 

10 -'1 

v 

v1 m 

,' 

10 10' 10' 10 '  10 10' 10' 10'  

Figure 7. Stopping power in AI (a) and Cu (b) computed from 00s models I 
(experimental oos,  short-dashed broken curves), II (LPA, long-dashed broken curves) 
and XU (subhell oscillstor model, full c-s) with the T 6-oscillator model, 

E (4 E (4 

IMFPs and stopping powers in aluminium and copper, computed by the T extension 
algorithm with the three 00s models, are shown in figures 6 and 7. For aluminium, 
the results from 00s models I and 111 are in quite good agreement on the whole energy 
range, despite the crudeness of model 111. This is apparently due to the fact that  the 
use of a single oscillator for the valence electrons in aluminium is actually appropriate 
(it corresponds realistically to the dominant bulk plasmon typical of this metal). The 
use of a single oscillator for each inner shell is a fairly good approximation as far as 
IMFP and stopping power are concerned; actually, this approximation is effectively 
equivalent to that used by Powell [24]. 

For copper, we also find (as expected) a good agreement in stopping power for 
models I and I11 at high energies, and, with present parameter values, fortuitously 
also in the IMFP. The use of a single oscillator for the valence electrons in copper 
is, however, not appropriate: it leads to a large discrepancy in the IMFP at energies 
below about 10' eV, and to a somewhat excessive stopping power at  energies between 
10' and lo3 eV. Preliminary calculations indicate that the valence electrons in copper 
are well represented by a very broad oscillator distribution (from about 10 eV to a 
few hundred eV). The inner shells can still be approximately represented by single 
oscillators. 



2890 

5. Conclusions 

Certain results, e.g. the m F P  and stopping power at low energies and the IMFP at 
somewhat higher energies, are quite sensitive to the model used to extend the adopted 
00s into the GOS. A preliminary conclusion is that a combination of the two-modes 
(T) model (for valence electrons) and the shell (S) model (for inner shells) could be 
a convenient recipe for simulation purposes. The 00s may be obtained directly from 
optical data, when those are available. However, our results also lead us to expect 
that a modelling of tabulated 00s in terms of atomic and band-structure data may 
be worthwhile, and could make it possible to estimate the 00s from atomic data with 
sufficient accuracy to obtain results that are quite comparable to the LPA, or even a 
substantial improvement beside this last approximation. 

One may expect a further improvement by introducing subshell oscillator distri- 
butions rather than single oscillators, and taking into account exchange effects and 
corrections to the Born approximation [16,25] at low energies. 

J M Fernrinder- Varea e t  a1 

Acknowledgments 

Financial support from the Comisi6n para la Investigaci6n Cientifica y T h i c a  
(Spain), project no PB86-0589, is gratefully acknowledged. F Salvat, wishes to ex- 
press his gratitude to the Servicio de Cooperaci6n Cientifico-Tkcnica of the Spanish 
blinisterio de Asuntos Exteriores for a travel grant. 

References 

[l] Tung C J, Ashley J C and Ritchie R H 1979 Swf’. Sei. 8 1  427 
[2] Johnson P E and Inokkuli M 1983 Cemmun. A t .  Mol. Phys .  1 4  19 
[3] Lindhard J 1954 K. Donahe Vidcnak Selak. Mat .  - Fva. Mcdd. 28 1 
[4] Ritchie R H and Howie A 1977 Phil. Mag. 36 463 
[SI Szajman J and Lediey R C G 1981 J. Elcctmn. Speetrosc.  Rclaf. Phcnom. 23 83 
161 Ashley J C 1982 J.  Eleefron. S p d m s c .  Relet. Phcnom. 28 177 
[7] Ashley J C 1988 J.  Electmn. Spcdrosc. Relet. P h e n o m .  46 199 
[SI Ashley J C 1990 J .  Elecfmn. Spccfrosc. R c f a t .  Phmom.  50 323 
[9] Liljequist D 1983 J. Phya.  D: Appl. Phys. 16 1567 

[lo] Liljequist D 1985 J. Appl. P h y r .  57 657 
[Ill Salvat F, Martinez J D, Mayol R and Parellada J 1985 J .  Phya. D: Appl.  Phys .  18 299 
[12] P e m  D R 1987 Phyr .  Rcv. B 35 482 
(131 Tsnums S, Powell C J and P a n  D R 1988 Swf, Interface Anal. 11 577 
[I41 Ding 2 - J  and Shimizu R 1989 Surf. Sei. 222 313 
[IS] Martinee J D, Mayo1 R and Salvat F 1990 J. Appl, Phyr. 67 2955 
[E] Mayol R and Salvat I: 1990 3. Phya.  E: Al. Mol. Phys.  23 2117 
[Ifl Mayol R. Femindez-Varea J Frl, Salvat F and Liljequist D 1991 Inferocfim of’ Charged Parfieles 

wifh Solids and Svrf’acrr NATO AS1 Series vol B-271, ed A Gras-Marti e t  ol (New York: 
Plenum) pp 585-591 

[IS] Jablonski A and Tougaard S 1990 J.  Vac. Sci. Technol. A 8 106 
1191 hokuti M 1971 Rcu. Mod. Phys .  43 297 
[ZO] Fano U 1963 Ann. Rcu. Nucf. Sci. 13 1 
[21] Palik D (ed) 1985 Hsndbook of’ Optical Consfnnfs of Solids (New York: Acadcmic) 
I221 Berger M J and Seltzer S M 1983 National BUILE~I of’ Standards Reporf NBSIR 82-2550.A 
[23] Bohr N 1948 K. Danskc Vidmsk.  Sdrk.  Mat. - Fys. Mcdd. 18 1 
[24] Powell C J 1974 Swf. Sci. 44 29 
(251 Hippler R 1990 P h y r .  Lett. 144A 81 


